
1

Rice HPCToolkit
on Blue Gene/Q

Mark W. Krentel
Department of Computer Science

Rice University
krentel@rice.edu

http://hpctoolkit.org

Mira Performance Boot Camp May 21, 2014
Tuesday, May 20, 14

mailto:krentel@rice.edu
mailto:krentel@rice.edu

HPCToolkit Basic Features
• Run application natively and every 100-200 times per second,

interrupt program and record snapshot of call stack and then
combine these into a calling context tree (CCT).

• Combine sampling data with an analysis of the program
binary: structure of loops, inline functions, etc.

• Present top-down, bottom-up and flat views of calling context
tree (CCT) and time-sequence trace view. Costs are displayed
per source line in the context of their call path.

• Can sample on Wallclock (itimer) and Hardware Performance
Counter Events (PAPI preset and native events): cycles, flops,
cache misses, etc.

2
Tuesday, May 20, 14

HPCToolkit Advanced Features
• Derived metrics -- compute flops per cycle, or flops per

memory reads, etc. and attribute to lines in source code.

• Strong and weak scaling loss, for example:
strong: 8 * (time at 8K cores) - (time at 1K cores)
weak: (time at 8K cores and 8x size) - (time at 1K cores)

• Load imbalance -- display distribution of metrics across
processes and threads (plot graphs).

• Blame shifting -- when thread is idle or waiting on a lock,
blame the working threads or holder of lock.

3
Tuesday, May 20, 14

What we do well ...
• Core events: monitor processes and threads for user-land

core events (cycles, flops, cache misses, etc) and attribute to
calling context.

• Finely-tuned unwinder to handle multi-lingual, fully-optimized
code, no frame pointers, broken return pointers, etc.
(especially x86_64).

• Monitor program at the binary level, run application and
libraries natively at full optimization. Don’t need to modify
source code, few blind spots.

• Low overhead, typically < 5%, overhead is proportional to
sampling rate, not number of function calls.

4
Tuesday, May 20, 14

What we do not so well ...
• Monitor syscalls (counters don’t advance inside kernel,

kernel work not directly attributable to user code).

• Scaling to very large scales (too many files, too many
processes, too much data).

5
Tuesday, May 20, 14

Work in progress ...
• Better attribution for inlined code, C++ templates, etc.

• Better support for OpenMP: work/idle threads, blame shifting,
attribution of #pragma parallel loops, etc.

• Better scaling: fewer files, less data, selective profiling, etc.

6
Tuesday, May 20, 14

HPCToolkit on mira/cetus
• Home site for build directions, Users guide, etc.

— http://hpctoolkit.org

• Installed on mira/cetus at:
— /gpfs/mira-fs1/projects/Tools/hpctoolkit/hpctoolkit

• Source code available for anon checkout at Google Code:
— http://hpctoolkit.googlecode.com/

• Send questions to:
— hpctoolkit-forum@mailman.rice.edu

• BSD License

• Always add ‘-g’ to preserve access to source code.

7
Tuesday, May 20, 14

http://hpctoolkit.googlecode.com
http://hpctoolkit.googlecode.com
mailto:hpctoolkit-forum@mailman.rice.edu
mailto:hpctoolkit-forum@mailman.rice.edu

HPCToolkit Capabilities at a Glance

Attribute Costs to Code

Analyze Behavior
over Time

Assess Imbalance
and Variability

Associate Costs with DataShift Blame from
Symptoms to Causes

Pinpoint & Quantify
Scaling Bottlenecks

hpctoolkit.org
Tuesday, May 20, 14

http://hpctoolkit.org
http://hpctoolkit.org

Measure and attribute costs in context
 sample timer or hardware counter overflows
 gather calling context using stack unwinding

Call Path Profiling

9

Call path sample

instruction pointer

return address

return address

return address

Overhead proportional to sampling frequency...
...not call frequency

Calling context tree

Tuesday, May 20, 14

• Profiling compresses out the temporal dimension
—temporal patterns, e.g. serialization, are invisible in profiles

• What can we do? Trace call path samples
—sketch:

– N times per second, take a call path sample of each thread
– organize the samples for each thread along a time line
– view how the execution evolves left to right
– what do we view?

 assign each procedure a color; view a depth slice of an execution

10

Understanding Temporal Behavior

Time

Processes

Call
stack

Tuesday, May 20, 14

AMG2006: 8PE x 8 OMP Threads

11

OpenMP loop in hypre_BoomerAMGRelax using
static scheduling has load imbalance; threads
idle for a significant fraction of their time

Tuesday, May 20, 14

Code-centric view: hypre_BoomerAMGRelax

12

Note: The highlighted OpenMP loop in
hypre_BoomerAMGRelax accounts for
only 4.6% of the execution time for this

benchmark run. In real runs, solves
using this loop are a dominant cost

across all instances of this OpenMP
loop in hypre_BoomerAMGRelax

19.7% of time in this loop is spent
idle idle w.r.t. total effort in this loop

Tuesday, May 20, 14

Serial Code in AMG2006 8 PE, 8 Threads

13

7 worker threads are
idle in each process
while its main MPI
thread is working

Tuesday, May 20, 14

